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ABSTRACT

This study explores the behavior of machine learning-based flare forecasting models
deployed in a simulated operational environment. Using Georgia State University’s
Space Weather Analytics for Solar Flares benchmark dataset (Angryk et al. 2020a,b),
we examine the impacts of training methodology and the solar cycle on decision tree,
support vector machine, and multilayer perceptron performance. We implement our
classifiers using three temporal training windows: stationary, rolling, and expanding.
The stationary window trains models using a single set of data available before the first
forecasting instance, which remains constant throughout the solar cycle. The rolling
window trains models using data from a constant time interval before the forecasting
instance, which moves with the solar cycle. Finally, the expanding window trains
models using all available data before the forecasting instance. For each window, a
number of input features (1, 5, 10, 25, 50, 120) and temporal sizes (5, 8, 11, 14, 17,
20 months) were tested. To our surprise, we found that for a 20-month window, skill
scores were comparable regardless of the window type, feature count, and classifier
selected. Furthermore, reducing the size of this window only marginally decreased
stationary and rolling window performance. This implies that, given enough data, a
stationary window can be chosen over other window types, eliminating the need for
model retraining. Lastly, a moderately strong positive correlation was found to exist
between a model’s false positive rate and the solar X-ray background flux. This suggests
that the solar cycle phase has a considerable influence on forecasting.

Keywords: Space weather (2037), Solar flares (1496), Support vector machine (1936),
Solar cycle (1487)

1. INTRODUCTION

Due to humanity’s growing technological advancements over the past century, solar eruptive events
have emerged as a significant threat to society and its infrastructure. Electromagnetic radiation,
solar energetic particles, and coronal mass ejections produced during solar flares have the potential
to interfere with radio communications, GPS, and power grids (Natras et al. 2019; Hudson 2021),
which are crucial components to our everyday lives. Furthermore, these events pose considerable
health risks to humans, particularly astronauts who are not shielded by Earth’s magnetosphere and
may receive increased doses of radiation. Considering these effects, the need for robust forecasting
models that provide accurate and timely predictions of solar flares has become increasingly impor-
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tant. Traditional forecasting methods, such as those used by the National Oceanic and Atmospheric
Administration (NOAA), have long relied on a blend of statistical analyses and human intuition
(Crown 2012). However, given the advancements of artificial intelligence in recent years, there has
been a gradual shift towards utilizing machine learning (ML) to automate and improve current fore-
casting capabilities. ML centers on training computers to make predictions on unseen data, given
their previously acquired knowledge of some available dataset (Florios et al. 2018). For flares, this
can be physics-based parameters of active region (AR) vector magnetograms, extreme ultraviolet
images of ARs, or even sunspot properties and McIntosh classifications (Bobra & Couvidat 2015;
Nishizuka et al. 2018; Li et al. 2007). Since its initial application to space weather in the early 1990s
(Camporeale 2019), ML has grown significantly, showing great promise within the community. How-
ever, despite this success, several notable issues continue to limit its implementation in operational
forecasting:

1. ML models are commonly trained and tested using a random set of flaring and non-flaring
data, which is not necessarily consistent with real-time forecasting. In an operational setting,
predictions must be based solely on data available prior to the forecasted event. This raises
the question: How do ML classifiers perform when utilizing chronological training and testing
partitions? Sadykov & Kosovichev (2017); Nishizuka et al. (2018); Leka et al. (2019a) have
considered this idea through static training and testing windows, however, to the best of our
knowledge, no studies have attempted to implement a dynamic temporal training strategy to
improve operational forecasts.

2. Complicated ML algorithms are often considered black boxes, providing little insight into their
predictive reasoning (Camporeale 2019). This makes it challenging for forecasters to rely on
them confidently. Thankfully, relatively basic models exist that provide easily interpretable
predictions. However, there is no guarantee that these models perform as well as their more
complex counterparts. A previous study from Deshmukh et al. (2023) found that, for flare fore-
casting, ML models of different complexities were quite comparable, but a similar investigation
has yet to be done for a real-time forecasting environment.

3. ML models are frequently trained on all available data to maximize performance. However,
this can result in a time-consuming training and hyperparameter optimization phase, which is
not ideal for real-time forecasting. A middle ground between performance and run time likely
exists, but the amount of data necessary to generate effective flare forecasts is currently poorly
understood.

4. The performance of ML-based flare forecasting models is heavily influenced by the selection
of training data. Previous studies have shown that skill scores may vary significantly when
training on different parts of the solar cycle (Wang et al. 2020). It is unclear whether these
impacts can be mitigated through dynamic training windows.

The goal of this work is to thoroughly examine each of these concerns. To address Problem 1,
we deploy a training and testing methodology that simulates a real-time predictive environment.
We accomplish this through three training windows we label as stationary, rolling, and expanding.
For Problem 2, we apply our training methodology to three different ML models of increasing
complexity: decision tree, support vector machine, and multilayer perceptron. We then explore
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how performance scales with the number of magnetogram features used in a prediction. To tackle
Problem 3, we investigate the impact of data volume on performance by implementing different
stationary and rolling window sizes. Finally, to handle Problem 4, we explore the relationship
between classifier performance and the solar background soft X-ray (SXR) flux. We use this as
a probe to investigate if the solar cycle has an effect on real-time forecasts, as well as how this
potential dependency interacts with the dynamic training windows. We would like to emphasize that
the main goal of this work is not necessarily to produce the best-performing classifier, but rather to
exhaustively examine the problems we have mentioned above.
The remaining sections of this work are organized as follows: Section 2 details the data we use to

construct our forecasts. Section 3 describes the methodology used to tune, train, test, and analyze
our ML models. Lastly, Section 4 & 5 highlight the results and conclusions of our study.

2. DATA

In this section, we provide a description of the three key datasets employed in this work. Section
2.1 provides an overview of the Space Weather Analytics for Solar Flares database, while Section 2.2
briefly describes the data used to analyze the performance dependency on the solar cycle.

2.1. Space Weather Analytics For Solar Flares (SWAN-SF)

Georgia State University’s SpaceWeather Analytics for Solar Flares (SWAN-SF) benchmark dataset
(Angryk et al. 2020b) is a comprehensive, ML-ready collection of multivariate time series samples
extracted from ARs present during Solar Cycle 24 (May 2010 – August 2018). For each AR, twenty-
four physics-based features (see Angryk et al. 2020b Table 1) are derived from photospheric vector
magnetograms taken by the Solar Dynamics Observatory Helioseismic and Magnetic Imager (Scherrer
et al. 2012). Throughout an AR’s lifetime, time series data are sliced into temporally successive
overlapping files (offset by 1-hour), each containing 12 hours’ worth of data, at a 12-minute cadence.
Files are then labeled based on the strongest flaring event that occurs in the following 24 hours. We
categorize flare strength using NOAA’s logarithmic classification scale: A (weakest), B, C, M, and X
(strongest). For this study, M and X-class flares are labeled as flaring events, considering they have
the greatest potential for societal impacts. Weaker flares, in addition to flare quiet time series, are
labeled as non-flaring events.
In total, there are 331,185 AR multivariate time series files in SWAN-SF. Given this, along with the

high dimensionality of each file, we decided to eliminate the contiguous temporal dimension of our
data. This process not only allowed for easier integration with our proposed ML models, discussed
in Section 3.1, but significantly reduced training and testing times, which is an important aspect to
consider when deploying models operationally. By extracting the summary statistics (mean, median,
standard deviation, maximum, and minimum) of each magnetic field parameter, within the 12-hour
window, all files were reduced to a single, point-in-time datum, with a dimension of 1 by 120. Any files
containing columns with missing data were linearly interpolated before calculating their summary
statistics, while files with empty columns were dropped altogether. To ensure that the data reflected a
real-time forecasting scenario as much as possible, all ARs were retained, including those potentially
prone to projection effects at radial distances greater than 70 degrees from the solar disk center.
Ultimately, we were left with 330,169 data points: 6,234 flaring and 323,935 non-flaring.
If the reader would like to learn more about the original data processing techniques for SWAN-SF,

please refer to Angryk et al. (2020b).
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2.2. Geostationary Operational Environmental Satellite (GOES) SXR Flux & Hale Classifications

To investigate potential correlations between a classifier’s performance and the phase of the solar
cycle, we utilized daily SXR flux data from GOES (1 - 8 Å channel) provided by Ali et al. (2024). A
proxy for the solar SXR background flux was then determined by selecting the minimum X-ray flux
measurement for each day during Solar Cycle 24. Additionally, we made use of AR Hale classifications
provided by Marroquin et al. (2023), to study the frequency of complex ARs throughout the solar
cycle. We then used these data in conjunction with each other to synthesize our results discussed in
Section 4.3.

3. METHODOLOGY

The structure of SWAN-SF frames this forecasting problem as a binary classification task, with the
ultimate goal of determining whether an AR will produce a ≥M class solar flare within the next 24
hours. Previous work has shown that ML-based classifiers such as decision tree, logistic regression,
random forest, support vector machine, and multilayer perceptron provide relatively reasonable fore-
casting performance when utilizing magnetogram feature sets (Yu et al. 2009; Yuan et al. 2010; Bobra
& Couvidat 2015; Florios et al. 2018). In this particular study, we focus on the simulated real-time
performance of three models: decision tree, support vector machine, and multilayer perception. This
subset covers a wide gambit of complexities, ensuring we obtain robust results.
The following sections provide a basic overview of each model (Section 3.1), the methodology for

data preprocessing, feature selection, and hyperparameter tuning (Section 3.2), the design of each
training window (Section 3.3), the performance metrics used to analyze our results (Section 3.4), and
our approach for studying the solar cycle dependence (Section 3.5).

3.1. Machine Learning Classifiers

Decision trees (DT) are a simple, yet effective, ML algorithm for classification. Their foundation
stems from a series of feature-based inequalities, which guide an input to a prediction. The overall
structure of this model is hierarchical in nature, consisting of interconnected nodes, children, and
leaves. Each node contains a test that compares a particular feature to some threshold value. These
nodes are then split into child nodes, each with their own thresholds, further subdividing the tree.
Eventually, enough splits are made to obtain a leaf, which determines the prediction for a given input.
Mathematically, DTs are constructed by minimizing the impurity of successive splits of the training
data. This can be considered analogous to determining the feature and decision boundary that best
separates two labeled distributions (Kingsford & Salzberg 2008; Kotsiantis 2013; Deshmukh et al.
2023). In this work, we focus on optimizing two key hyperparameters of our DT model: the tree
depth and the number of training samples needed for a split/leaf node to occur. We also explore
a variety of impurities (Gini and entropy), when splitting nodes (see Kingsford & Salzberg (2008);
Kotsiantis (2013) for more details).
In its simplest form, the support vector machine (SVM) algorithm identifies a multidimensional

hyperplane in feature space that maximizes the separation between labels. This hyperplane is then
used to make predictions on input data. Typically, more complex, non-linear structures are needed
to separate labels adequately. Thus, kernels may be applied to map the feature space into a higher
dimension. In this paper, we employ a radial basis function (RBF) kernel (Bobra & Couvidat 2015),
which is influenced by two fundamental hyperparameters: C and γ. C is a penalty parameter for
the misclassification of training data, where large values of C result in overfitting and low values
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lead to underfitting. γ on the other hand is the “width” of the kernel. High values of γ increase the
complexity of the decision boundary, while smaller values generate a smoother division, resulting in
performance similar to that of a linear boundary.
Multilayer perceptrons (MLP) are a subclass of feed-forward neural networks containing a set of

fully connected nodes (or neurons) across consecutive neuron layers. These nodes, which constitute
the building blocks of the algorithm, possess a series of inputs, outputs, and weights that facilitate
the creation of a non-linear decision boundary. All incoming data to a node is multiplied by its
corresponding weight and summed together. The result is then transformed using an activation
function and passed to the output, which connects to each node within the subsequent layer (Gardner
& Dorling 1998; Deshmukh et al. 2023). Typically, MLPs have three stages: a single input layer,
a single output layer, and some arbitrarily large hidden layer sandwiched in between. For binary
classification tasks, the input layer contains the same number of nodes as the size of the feature
space, the output layer contains 2 nodes, and the hidden layers contain any number of nodes. In this
study, after some trial and error, we settled on a 3-stage hidden layer, with 50, 25, and 12 nodes. To
optimize the node weights, we utilize Adam, a stochastic gradient descent algorithm (Kingma & Ba
2014). For our non-linear activation function, we chose the rectified linear unit (ReLU), a reliable
transformation used in most modern networks. Two key hyperparameters we consider in this work,
which can be tweaked to improve performance, are α and the number of training iterations. α serves
as the strength of the L2 regularization. If α is large, there is a high penalty for misclassification,
leading to a greater likelihood of overfitting the training data. The number of training iterations is
how often the weights of the MLP are updated. The larger this value, the more vulnerable the MLP
is to overfitting.
To implement these models, we use Python’s scikit-learn library (Pedregosa et al. 2011). This

package provides excellent support for data preprocessing, feature selection, and hyperparameter
tuning.

3.2. Data Preprocessing, Feature Selection, & Hyperparameter Tuning

Data preprocessing is a key aspect to consider when training ML models, as incorrectly formatted
or inconsistent data can lead to significantly worse predictions. In particular, disagreement in feature
scales (due to differences in units) can pose problems, since features with larger scales tend to
be given additional weight. We address this problem by rescaling each training dataset feature
distribution to a mean of 0 and a variance of 1, using scikit-learn’s Standard Scaler module.
This transformation is calculated using the following formula: z = x−u

s
, where z is the transformed

value, x is the input value, u is the mean of the training samples, and s is the standard deviation
of the training samples. The transformation is then applied to the testing dataset, using the same
training values for u and s to ensure that no testing data bias is introduced into our predictions.
Feature selection is another crucial facet to include, as utilizing features with little predictive ca-

pacity will result in poor performance. To determine the optimal features to select, we employ
scikit-learn’s SelectKBest module, which calculates the analysis of variance (ANOVA) F-value
for each feature in the training dataset. This univariate statistic provides an estimate for the sepa-
ration of variances between two distributions (in this case flaring/non-flaring events). Narrow and
widely spaced distributions will produce large F-values, while significantly overlapping distributions
with large standard deviations will result in small F-values. The metric is mathematically defined in
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the following way (Bobra & Couvidat 2015):

F (i) =
(x̄+

i − x̄i)
2 + (x̄−

i − x̄i)
2

1
n+−1

∑n+

c=1(x̄
+
c,i − x̄i)2 +

1
n−−1

∑n−

c=1(x̄
−
c,i − x̄i)2

(1)

where, for a given feature i, x̄+
i is the average value across flaring events, x̄−

i is the average value
across non-flaring events, x̄i is the average value across all events, n

+ is the number of flaring events,
and n− is the number of non-flaring events. The k features with the highest F-values are then kept, as
they have the best-separated distributions, and thus, are beneficial to use when training our models.
Determining the appropriate value for k can be challenging, so several were tested: 1, 5, 10, 25, 50,
and 120 (see Section 4.1). We apply this selection methodology to every new training dataset, prior
to undersampling (see Section 3.3). Ultimately, the main reason we settled on this feature selection
approach over others is its proven success within SWAN-SF. Generally, F-values have been shown to
provide reasonable insight into a feature’s importance (Yeolekar et al. 2021).
Lastly, to address hyperparameter tuning, a necessary step for maximizing predictive performance,

we implement a grid search using scikit-learn’s GridSearchCV module. This enables us to ex-
haustively test combinations of hyperparameters and select those that result in the best-performing
model. For each training dataset, a stratified group 5-fold cross-validation was applied. This ensures
that within the training and testing folds, no data overlaps between ARs, and a similar number of
flaring and non-flaring events are present. Using the generated folds, a model for every possible
combination of hyperparameters shown in Table 1 was tested. The model that produced the highest
true skill statistic score (see Section 3.4) was then selected for application to the full training dataset.
Once again, we apply this process for all new data fed to the model.

3.3. Simulated Real-time Training Windows

To explore the performance of a classifier in an operational setting, we designed a simulated real-
time environment centered on training and testing ML models chronologically throughout Solar Cycle
24. Training data were produced using three different dynamic temporal windows: stationary, rolling,
and expanding (see Figure 1). The stationary window paradigm generates forecasts using a single set
of data that is available before the first forecasting instance. This training data is always selected from
the beginning of the solar cycle (May 2010 onward). The rolling window paradigm generates forecasts
based on data from a constant time interval before the currently observed forecasting instance. This
is similar to the stationary window, however, now, the window moves with the testing data. Lastly,
models trained using the expanding window paradigm utilize all available data before the currently
observed forecasting instance.
The boundary conditions for a given window were defined to best emulate data acquired in real-

time. For a given window lower boundary date, denoted as X, all data with time series start dates
≥ X were retained. For a given window upper boundary date, denoted as Y , non-flaring data whose
24-hour forecasting window ends ≤ Y were kept. Data instances with forecasting windows extending
beyond this date were excluded, as operators would need to wait the full 24 hours to confirm an AR
as non-flaring. In the case of flaring data, time series can instantly be labeled as a flaring event, once
an M or X class flare occurs. Thus, data corresponding to flares that took place at times ≤ Y were
kept, even if their 24-hour forecasting window had extended beyond the boundary.
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ML Classifier scikit-learn Grid Search Hyperparameters

Decision Tree criterion: ["gini", "entropy"]

class weight: ["balanced"]

max depth: [2, 3, 4, 5, 10, 20, 30, 40, 50, 100]

min samples leaf: [1, 10, 20, 30, 40, 50, 100]

min samples split: [2, 10, 20, 30, 40, 50, 100]

Support Vector Machine kernel: ["rbf"]

class weight: ["balanced"]

C: [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000]

gamma: [scale, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000]

Multilayer Perceptron hidden layer sizes: [(50, 25, 12)]

solver: ["adam"]

activation: ["relu"]

learning rate: ["adaptive"]

alpha: [0.0001, 0.001, 0.01, 0.1, 1, 10, 100]

max iter: [5, 10, 20, 30, 40, 50, 100, 200]

Note—The SVM scale hyperparameter for gamma uses the inverse of the number of fea-
tures times the variance of the feature vector. See the scikit-learn API (https://scikit-
learn.org/stable/modules/classes.html) for additional details on each parameter.

Table 1. A list of hyperparameters used in the DT, SVM, and MLP grid search.

For the testing data, windows were generated in sequential 3-month blocks starting January 1st,
2012. The boundaries for the blocks were set to encompass all flaring data and any non-flaring time
series whose 24-hour forecasting window end date fell within the 3-month block. Any testing blocks
that did not contain flaring data were not considered in our analysis of true skill statistic and Heidke
skill score in Sections 4.1 and 4.2. This includes the period between April 2016 and March 2017, as
well as any time after September 2017.
For each training dataset, an undersampling approach was applied to mitigate the effects of class

imbalance. Within a given window, all flaring data were retained. However, non-flaring data were
randomly sampled to match the number of flaring events, while preserving the original ratio of C-
class to B-class to flare quiet events. For example, consider a training window consisting of 119
X-class, 974 M-class, 5,481 C-class, 5,184 B-class, and 51,160 flare quiet data. There are a total of
1,093 flaring events, which we want to retain, and 61,825 non-flaring events, which we want to trim
down. By calculating the ratio between the number of flaring and non-flaring events (1,093/61,825)
and multiplying it by the number of C-class, B-class, and flare quiet events, we can determine the
required sample size from each class to preserve their original ratio while adding up to the desired
1,093 non-flaring events. Consequently, when applying this technique to the previous example, we
get 97 C-class, 92 B-class, and 904 flare quiet events. Generally, this approach has proven to be
successful when training and testing with SWAN-SF (Ahmadzadeh et al. 2021).

https://scikit-learn.org/stable/modules/classes.html
https://scikit-learn.org/stable/modules/classes.html
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(a)

(b)

(c)

Figure 1. (a) An example of the stationary training window methodology. Each model is trained on a set
portion of the data at the beginning of the solar cycle (in this example it is the first 20 months). Model
performance is then analyzed in consecutive 3-month blocks after training. (b) An example of the rolling
training window methodology. Each model is trained similarly to the stationary window, however, the
window now moves with the testing blocks. (c) A depiction of the expanding window methodology. Here,
the models are trained using the entire available dataset, prior to the forecasting instance. The arrows in
each figure emphasize the temporal continuation of the training windows, testing windows, and the dataset
itself.
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Lastly, to investigate how performance scales with data volume, a series of stationary and rolling
window sizes (5, 8, 11, 14, 17, and 20 months) were tested. For the stationary windows, data were
selected starting from May 2010 up until the added window size. For the rolling windows, data were
selected between the testing window start date and extended into the past by the rolling window size.
For each model, a total of three trials were run, each with different randomly undersampled non-flaring
data to ensure robust results. Models with training data lacking flaring events were disregarded, and
instead, the previously available trained model would be used. This was only pertinent to the rolling
window.

3.4. Performance Metrics

To evaluate the performance of each classifier, the true skill statistic (TSS) and Heidke skill score
(HSS2) were calculated for every 3-month testing block. These metrics are defined in the following
way (Bobra & Couvidat 2015):

TSS =
TP

TP + FN
− FP

FP + TN
(2)

HSS2 =
2× [(TP × TN)− (FN × FP )]

(TP + FN)× (FN + TN) + (TP + FP )× (FP + TN)
(3)

where TP = true positives (the number of correctly predicted flaring events), TN = true negatives
(the number of correctly predicted non-flaring events), FP = false positives (the number of non-
flaring events predicted as flaring), and FN = false negatives (the number of flaring events predicted
as non-flaring). TSS ranges from -1 to +1, with a score of 0 reflecting a classifier that makes random
or purely positive/negative forecasts, a score of -1 reflecting a classifier that is always wrong, and
a score of +1 reflecting a perfect classifier (Ahmadzadeh et al. 2021). This metric is particularly
advantageous as it is unbiased to the class imbalance problem prevalent within flare forecasting
(Bobra & Couvidat 2015). When using TSS, one must keep in mind that two models with the same
score do not necessarily produce an identical number of true positives and true negatives. This
is because the metric is dependent on the balance of the true positive rate ( TP

TP+FN
) and the false

positive rate ( FP
FP+TN

), which can be individually tweaked to achieve the same score (Ahmadzadeh
et al. 2021).
Like TSS, HSS2 ranges from -1 to +1 and provides an insight into a model’s improvement over a

random forecast. However, the minimum score is now dependent on the class imbalance ratio. As
it reaches 1:1 (an equal number of flaring and non-flaring events), the lower boundary approaches
-1 (Ahmadzadeh et al. 2021). A score of 0 is equivalent to a random classifier, a negative score is
representative of a classifier that performs worse than random, and a score of +1 reflects a perfect
classifier. We have selected this definition of the Heidke skill score over the original (HSS1), high-
lighted in Bobra & Couvidat (2015), as it tends to be less sensitive to the effects of class imbalance.
Nevertheless, compared to TSS, both definitions are significantly more susceptible, with scores de-
creasing as the class imbalance ratio increases (see Figures 2 and 4 in Bobra & Couvidat 2015 and
Ahmadzadeh et al. 2021 for an illustrative example). Overall, both metrics are widely used in the
community, enabling others to make comparisons to this work, provided that they apply a similar
methodology as shown here.
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3.5. Dependency On The Solar Cycle

Finally, to highlight performance dependencies on the solar cycle, we investigate the interplay
between a model’s false positive rate (FPR = FP

FP+TN
) and the solar SXR background flux. We

approach this by calculating the Spearman correlation between these parameters for each model
utilizing 25 features. All window types, window sizes, classifiers, and trials were included. Following
this, we back up our results by performing a study on how FPR is influenced by the largest flare class
generated by an AR, and how the frequency of complex ARs changes throughout the solar cycle.

4. RESULTS & DISCUSSION

In the following sections, we discuss the results of our work in detail. In Section 4.1, we explore
the effects of feature selection on model performance and highlight the magnetogram features most
frequently chosen in our forecasts. In Section 4.2, we compare model performance between the
different window types and investigate how the temporal size of the stationary and rolling training
windows affect our predictions. Finally, in Section 4.3, we determine a correlation between the solar
SXR background flux and the FPR.

4.1. Impacts Of Feature Selection

The dimensionality of the feature space significantly influences the training time and complexity
of a model. In an operational environment, unnecessary delays and complications must be avoided.
Thus, we explore how the number of features selected for a given model affects performance, in hopes
of establishing a baseline feature requirement for forecasts utilizing point-in-time magnetogram data.
Figure 2 summarizes our results. The columns highlight a particular skill score: TSS (left) and HSS2

(right), while the rows correspond to our three tested classifiers: DT (top), SVM (middle), and MLP
(bottom). The radar plots are divided into six sections, one for every feature count tested (1, 5, 10,
25, 50, and 120 features). Within each wedge, the radial extent of the bars denotes the skill score
for a given feature set and window type (color), averaged across all available 3-month testing blocks
(01/01/2012 - 03/31/2016, 04/01/2017 - 09/30/2017) associated with the 20-month stationary and
rolling windows. This 20-month window was selected to remove any dependencies on data volume,
which will be explored in Section 4.2.
At first glance, we find that TSS and HSS2 scores tend to increase as more features are included in

a forecast. This is expected, given that a higher-dimensionality feature space offers additional means
to distinguish between the flaring and non-flaring distributions. However, it is rather surprising that,
for a given classifier and window type, skill scores improve on average by only 0.035 when jumping
from 1 to 120 features. To check whether these improvements are statistically significant, we can
compare the absolute difference between the two feature scores (|X̄120 − X̄1|) and their combined

standard errors (
√

σ2
X̄,120

+ σ2
X̄,1

). When we do this, we find that 88.8% of the improvements have a

larger absolute difference than their combined errors, implying that they are statistically significant
measurements at a 1σ or 68% confidence interval. If we extend this to 2σ, we discover that over
61% of the improvements are statistically significant at a 95% confidence interval. This suggests
that, in general, our observations are meaningful and not simply due to the uncertainties in our data.
However, the general similarity between scores still warrants further investigation.
To explore this topic in more detail, we examine the features that are typically chosen for a forecast,

the flaring and non-flaring populations of those features, and the correlations between them. Figure
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Figure 2. Average TSS and HSS2 scores for the DT, SVM, and MLP classifiers with varying feature counts
(1, 5, 10, 25, 50, 120) and window types. The error bars illustrate the standard error on the mean. Note:
These results were obtained using a stationary and rolling window of 20 months.
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Figure 3. The average normalized F-value for the 25 highest-scoring features. This metric can be thought
of as a proxy for selection frequency. Features with values close to 1 tend to be those with the highest scoring
F-value (and thus more likely to be chosen) in a given training window.

3 depicts the average normalized F-value for the 25 highest-scoring features. A metric, which can be
considered a proxy for the selection frequency of a particular parameter. To calculate this measure,
we first determined the F-value of each feature across all stationary, rolling, and expanding training
datasets. For a particular dataset, all F-values were normalized with respect to the highest achieved
F-value. The scores for each feature were then averaged over all datasets and finally organized in de-
creasing order. Please note that even though we display the averages for individual window types, the
order shown is solely based on the average across all training datasets. Since there is only 1 instance
of the stationary window, and 19 instances (one for each new testing dataset) for both the rolling and
expanding windows, the stationary window only provides a small contribution to this order. From
the figure, it is evident that the summary statistics from only a few magnetogram parameters tend to
be chosen for a given forecast: ABSNJZH (absolute values of the net current helicity), SAVNCPP
(sum of the absolute value of net current polarity), TOTUSJH (total unsigned current helicity),
TOTBSQ (total magnitude of the Lorentz force), TOTPOT (total photospheric magnetic free en-
ergy density), TOTUSJZ (total unsigned vertical current), and USFLUX (total unsigned flux).
These features align well with those highlighted in other work within the field (Bobra & Couvidat
2015; Yeolekar et al. 2021; Zhang et al. 2022).
For a more comprehensive look, we have plotted the flaring and non-flaring distributions of the

highest-ranking statistics for these features (see Figure 4). These figures reveal an overarching simi-
larity between the distributions, with each of them having a right-skewed non-flaring and left-skewed
flaring population. While significant overlaps exist, demonstrating the challenge behind flare fore-
casting, a separation between the medians of these populations can still be resolved. This provides
enough distinction to make reasonable forecasts utilizing even a single feature (most frequently AB-
SNJZH max), which explains the relatively high TSS scores we have obtained.
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Figure 4. The flaring and non-flaring distributions for ABSNJZH max (the maximum absolute value of
the net current helicity), SAVNCPP max (the maximum sum of the absolute value of net current polarity),
TOTUSJH median (the median total unsigned current helicity), TOTBSQ max (the maximum total mag-
nitude of the Lorentz force), TOTPOT min (the minimum total photospheric magnetic free energy density),
TOTUSJZ min (the minimum total unsigned vertical current), and USFLUX min (the minimum total un-
signed flux) over the entire SWAN-SF dataset. Distributions are plotted on a log-log scale. Bins containing
zeros are plotted before the break in the x-axis. The solid blue line indicates the median of the non-flaring
distribution. The dotted orange line indicates the median of the flaring distribution.

Calculating the Spearman correlation between the 7 features in Figure 4, we find that a strong
positive correlation exists between all of them (see Figure 5). Extending this analysis to all 25
features in Figure 3, it comes as no surprise that a similar trend is found, with all unique correlations
being ≥0.72 and 80% of them being ≥0.90. Though correlation does not necessarily mean that two
features aren’t complementary (Guyon & Elisseeff 2003), we believe that this could still be a plausible
explanation for our results. Highly correlated features often provide similar information about the
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Figure 5. A Spearman correlation heatmap for the features selected in Figure 4.

target class. Therefore, combining them will result in only minor improvements in the separability
of the population. In our case, the 25 most important features are highly correlated, which may
explain why the performance from 1 to 25 features is fairly comparable. Beyond 25, the additionally
included features have diminishing F-values, making it significantly more difficult to separate between
flaring and non-flaring events (at least in a 1-dimensional sense). This may explain the only marginal
performance improvements found in this range.
Shifting our focus to individual window types, we find that the rolling window consistently matches

or outperforms the stationary and expanding windows, particularly when utilizing only 1 or 5 features.
We speculate that this may be a consequence of the window’s ability to capture the current flare
occurrence rate. On a large scale, performance differences between the three window types are
relatively minimal. This is unexpected given that, during the latter half of the solar cycle, the
expanding window has access to significantly more flaring data than the other windows (see Figure
6). This suggests that, with a sufficient amount of data, a stationary classifier may be chosen over
other window types. This not only saves time but dramatically reduces the difficulty of implementing
an operational model. Of course, these results utilize a relatively large training window. Utilizing a



15

Figure 6. The number of flaring events as time progresses in the 20-month stationary, rolling, and expanding
windows. The red regions illustrate periods where no testing windows exist, so no model was trained.

smaller stationary or rolling window may not produce the same results. We explore this further in
Section 4.2.
Finally, comparing results across the three tested classifiers, it becomes evident that MLPs yield the

best TSS and HSS2 scores, regardless of the number of features or window type selected (see Figure
7). Given the algorithm’s complexity, this is expected. However, the narrow difference between the
skill scores of all three classifiers is rather surprising. This clearly suggests that easily interpretable
models, such as DTs, may be a viable alternative to more complicated models when provided with a
20-month training window. We investigate this trend for different window sizes in Section 4.2.

4.2. Impacts Of Training Window Size

In addition to feature selection, data volumes are critical to producing effective flare forecasting
models. Without the proper amount of training data, ML algorithms fail to capture an adequate
decision boundary, which can significantly degrade performance. Since data volumes can vary during
operational deployment, it is essential to explore how skill scores are affected by this aspect and how
these restrictions interact with our custom training windows. Figure 8 summarizes our results. Once



16

Figure 7. Average TSS and HSS2 scores for the DT, SVM, and MLP classifiers with varying feature counts
(1, 5, 10, 25, 50, 120) and window types. The error bars illustrate the standard error on the mean. This plot
is similar to Figure 2, except that a comparison is now being made between classifiers instead of window
type. Note: These results were obtained using a stationary and rolling window of 20 months.
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Figure 8. Average TSS and HSS2 scores for the 25 feature DT, SVM, and MLP with varying stationary
and rolling window sizes (5, 8, 11, 14, 17, 20 months). Naturally, the skill scores for the expanding window
are the same across different window sizes. They are included for reference. The error bars illustrate the
standard error on the mean. Note: The 8-month stationary DT (the red wedge) has an average TSS score
of 0.26 ± 0.05.
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again, each column highlights a specific skill score, and each row a particular model. The radar plots
are divided into six sections, one for every stationary and rolling window size tested (5, 8, 11, 14,
17, and 20 months). Within each wedge, the radial extent of the bars denotes the skill score for a
given window size and type, averaged across all testing data (01/01/2012 - 03/31/2016, 04/01/2017
- 09/30/2017) associated with the 20-month stationary and rolling training windows. This ensures
that our findings are comparable across window sizes. Since the expanding window utilizes all data
prior to the forecasting instance, its scores are the same across all wedges.
First, examining the general skill score trends, we find that the effects of window size on TSS

and HSS2 are dependent on the classifier and window type selected. For certain combinations, such
as the DT with rolling window, removing training data results in a steady decline in performance,
as one might expect. However, we find that this is non-universal, with a majority of scores being
completely uncorrelated with one another. For example, the stationary SVM TSS is larger for the
5-month window than the 20-month window, even though it has significantly fewer flares. This hints
that there may be some underlying limitations to our dataset, which we suspect are imposed by our
methodology. When calculating the summary statistics of each time series, we remove potentially
significant knowledge related to the dynamics of an event. This gives us a lighter dataset, that
is easier to work with but may not be as informative. It is apparent that our models are able to
capture some important aspects needed to predict flares, as they achieve fairly high skill scores, but
with additional data, this can only improve so much. Without more exhaustive features, which can
be taken advantage of by our ML models, increasing data volumes will not provide enough new
information about the flaring population to significantly affect performance. A potential solution to
this problem is to train models utilizing the entire time series, which has been shown to improve
skill scores in SWAN-SF (Ji et al. 2020). However, it remains to be seen how, or even if, this would
affect our data volume results. Lastly, a recent study has shown that magnetogram data alone does
not provide significant improvements over human-based forecasting (Leka et al. 2019b). This hints
that there may be some inherent simplicity to magnetogram data itself, which limits its predictive
capability and contributes to the findings shown here.
Taking a deeper dive into our results, we find that the stationary window almost always produces

better TSS, but noticeably worse HSS2 scores, than the rolling window when the window size is less
than 20-months. Since the stationary window covers the beginning of the solar cycle, where the
number of flaring events is low, models will be biased toward capturing each flaring event in the
training data. This is because missing a single flare has a large impact on the true positive rate
( TP
TP+FN

) and in turn the TSS score, which we are attempting to maximize when training the model.
This leads to the stationary window producing fewer false negatives and more false positives while
testing, which has less of an effect on TSS than HSS2.
Lastly, when comparing performance across classifiers (see Figure 9), we again find that MLPs yield

the best TSS and HSS2 scores by only a small margin. SVMs and DTs, follow closely behind, even
occasionally outperforming MLPs in select window types, sizes, and skill scores. This extends our
conclusion made in 4.1, that less complex models can be reliably used in place of more sophisticated
algorithms, to varying data volumes. However, we find that when window sizes get too small, one
must be cautious. The 8-month stationary DT window produces dreadful TSS and HSS2 scores,
which we suspect may be a consequence of the algorithm itself. It is well known that DTs tend to
struggle with instabilities and under/overfitting, with small changes in their training data producing
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Figure 9. Average TSS and HSS2 scores for the 25 feature DT, SVM, and MLP with varying stationary
and rolling window sizes (5, 8, 11, 14, 17, 20 months). The error bars illustrate the standard error on the
mean. This plot is similar to Figure 8, except a comparison is now being made between classifiers instead of
window type. Note: The 8-month stationary DT (the red wedge) has an average TSS score of 0.26 ± 0.05.
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vastly different trees (Li & Belford 2002). These effects, compounded with the fact there is little
training data, lead to a higher chance of producing a decision boundary that does not accurately
separate the entire flaring population in the testing dataset.

4.3. Dependency On The Solar Cycle

Finally, to investigate the impact of the solar cycle on model performance, we explore the relation-
ship between FPR and a proxy for the SXR background flux (the minimum daily GOES flux value).
Figure 10 summarizes our results. Here we find that a moderately strong positive correlation (mean
of ρ = 0.570) exists for the conglomeration of our 25 feature trials (see the All Data label in Figure
10). This indicates that as we reach solar maximum (when background levels are high), the FPR also
increases. We find that models utilizing the rolling window or the MLP classifier tend to be more
susceptible to this trend. Interestingly, no window type or classifier is impervious to this correlation.

Largest Flare Produced By AR False Positive Rate Of ARs Within Flare Group

Flare Quiet / A 0.010 ± 0.001

B 0.077 ± 0.004

C 0.312 ± 0.007

M 0.699 ± 0.008

X 0.823 ± 0.008

Table 2. The FPR for ARs grouped by the strongest flare produced during their lifetime. Results are
averaged across data from all models utilizing 25 features. The standard error on the mean is shown as well.

To explore this further, we then examine how the largest flare class generated by an AR influences
its FPR. To accomplish this, we first divide our ARs into flaring groups dependent on the strongest
event they produce within their lifetime (X, M, C, B, or A / flare quiet). Any point-in-time data
associated with a particular AR is placed within the same group. We then recalculate the FPR for
the data in each AR category and average our findings across all models utilizing 25 features. Table
2 presents our results. It is evident that ARs producing M or X-class flares generally have elevated
FPRs in comparison to ARs generating weaker flares. This is somewhat expected, given that B and
C-class flares, as well as flare quiet periods, occur intermittently throughout flaring episodes, which
can be challenging to detect. ARs may appear to have high-magnetic activity over the previous 12
hours (in comparison to a typical non-flaring event) but do not end up flaring. This, of course, leads
to significantly more false positive predictions for these ARs.
Building on this, we then consider the frequency of complex ARs (those more likely to produce M

and X-class flares) throughout the solar cycle. In Figure 11, we plot the ratio of ARs with a Hale
classification > β (this includes γ, β − γ, δ, β − δ, β − γ − δ, and γ − δ) to the total number of ARs,
binned monthly for Solar Cycle 24. Here, we find that more complex ARs have a higher likelihood of
existing during the peak of the solar cycle (near 2014) compared to the beginning or end. Tying this
back to our findings from Table 2: if the probability of having a more complex AR is higher during
the peak of the cycle, and ARs producing stronger flares tend to have larger FPRs, then there is
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(a) (b)

(c) (d)

Figure 10. (a) Boxplots of the Spearman correlation between the FPR and the background SXR flux.
Plots are made for the entire collection of results, window types, and classifiers. Results are shown only
for models that utilize 25 features. A swarm plot is overlaid to emphasize the distribution of data. The
triangles indicate the mean of the distributions. (b, c, d) Scatter plots of the FPR versus background SXR
flux for single trials of the 20-month DT, SVM, and MLP models. The correlation for each window type is
given by ρ. The FPR and background SXR were binned monthly to reduce noise due to daily fluctuations.
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Figure 11. The AR complexity ratio versus time over Solar Cycle 24. AR complexity ratio is calculated
by dividing the number of ARs with a Hale classification more complex than β (this includes γ, β − γ, δ,
β − δ, β − γ − δ, and γ − δ) by the total number of ARs across each month. A Savitzky-Golay filter (solid
red line) has been applied to illustrate the general trend of the data.

reason to believe that the FPR will increase with background SXR flux. Of course, it is important
to note that our forecasts are based solely on magnetic field parameters, with no direct relationship
to the background SXR flux. Thus, we would like to emphasize that this result is merely a statistical
observation rather than a causal relationship.

5. SUMMARY & CONCLUSIONS

In this study, we focused on producing a simulated real-time prediction environment, which can be
used as a test bed to analyze how a variety of classifiers, features, data volumes, and the solar cycle
impact operational performance. From this work, we have identified the following key results:

1. Across all window types, the most frequently chosen magnetogram features are ABSNJZH
(absolute values of the net current helicity), SAVNCPP (sum of the absolute value of net
current polarity), TOTUSJH (total unsigned current helicity), TOTBSQ (total magnitude
of the Lorentz force), TOTPOT (total photospheric magnetic free energy density), TOTUSJZ
(total unsigned vertical current), and USFLUX (total unsigned flux). This corresponds well
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with results from other papers within the field (Bobra & Couvidat 2015; Yeolekar et al. 2021;
Zhang et al. 2022).

2. The number of magnetogram features used to make a prediction does not have a significant
effect on TSS or HSS2 scores. Only a marginal increase in performance is observed as additional
features are included in a forecast. We believe this may be an outcome of the highly correlated
nature of our features.

3. When utilizing a 20-month stationary or rolling window, performance is generally comparable
to the expanding window. Only a minor decrease in performance is observed for the stationary
and rolling windows when their size is reduced. This suggests that, provided with a sufficient
amount of data, a stationary classifier can be chosen over other window types, removing the
need for retraining. We believe this to be a consequence of our methodology or potentially an
inherent simplicity of the magnetogram data itself.

4. Simple and interpretable machine learning classifiers, such as decision trees, provide skill scores
similar to those of more complex models.

5. A moderately strong positive Spearman correlation exists between a model’s false positive
rate and the background soft X-ray flux. We hypothesize that this is a consequence of highly
complex active regions (those more likely to produce M and X-class flares) appearing more
frequently during the peak of the solar cycle. From our analysis, we observed that these active
regions tend to be accompanied by larger false positive rates.

Overall, we can conclude that for operational forecasts utilizing point-in-time magnetogram data,
the number of features, window size, window type, and classifier used have a minimal impact on
performance, at least for those we tested.
Regarding future studies, there are numerous paths we can explore. First, it may be valuable to

investigate whether utilizing temporally dependent features, such as the time series derivative of a
parameter, has any impact on the forecasting results shown here. These descriptive statistics could
give a model better insight into how an active region is growing/decaying over time, which may
lead to improved performance. However, recent work by Nishizuka et al. (2017) found that these
features are ineffective on time scales less than 24 hours. This indicates that we would likely need to
extend our 12-hour observation window to benefit from them. A better alternative would be to train
models directly on the time series data itself, rather than the point-in-time summary statistics. This
could be accomplished through more complicated deep learning algorithms such as long short-term
memory (LSTM) networks, which have been employed in other studies (Liu et al. 2019; Sun et al.
2022). Of course, with these models comes added training time and a need for increasingly powerful
computational resources, which is not ideal for operational purposes. Lastly, a major drawback of the
current SWAN-SF iteration is its focus on 24-hour forecasting. With the rapidly approaching NASA
Artemis missions, it will be critical that we have the capability of predicting flaring events even farther
in advance (hopefully up to 72 hours). While not addressed in this paper, it may be worthwhile in
future studies to modify the current dataset labels for several extended forecasting windows (36, 48,
72 hours). This may reveal hidden intricacies between our various training methodologies, not found
in this work.
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